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Abstract: In this paper, we introduce a method to identify a damage zone and the material
properties at the damage zone by means of inverse analysis based on a series of measurement data
such as transient displacements, temperatures and water pressures. The inverse problem is solved
iteratively by the Particle Swarm Optimization method. The uncertainty of the measurement data
may propagate to the uncertainty in the identification of the damage zone. This paper considers
the uncertainty of the measurements by assuming different noise levels of the measurements. The
uncertainty of the damage zone can be quantified by its probability distribution.
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1. Introduction

After more than one hundred years in use, material properties of the masonry dam bodies are
changed. The deterioration of the material properties is supposed because of ageing, weathering
and chemical effects. Consequently, there could appear some zones or cracks, where the properties
of the material (e.g. stiffness, permeability and thermal conductivity) have a big change. It is useful
and economic that the damage zone can be identified based on the present measurement data,
which are obtained via the devices which are permanently installed in the dam.

Ordinarily, masonry dams have to bear two major loads: water pressure and self-weight load.
Besides that the temperature inside the dam structure varies according to the water levels and
air temperatures. This causes stresses within the structure and deformation of the dam. These be-
haviours have been monitored in terms of temporal displacement, water pressure, and temperature.
According to the measurement in (Bettzieche, 2004), the effect of temperature on the deformation
of the masonry dam is significant. Therefore, thermal conduction, water transport and force -
deformation relations have to be considered when performing numerical simulations of the dam
(Nguyen-Tuan et al., 2015).

The damage can be identified based on statistics and optimization against the experimental data
such as reduction of natural frequencies (Wang and He, 2007) or monitoring of displacements with
radar (Ardito and Cocchetti, 2006). The damage zone of the dam has been also identified using
the inverse problem based on a hydro-mechanical model (Lahmer, 2010). It is to note that the
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reliability of the solution of the inverse problem depends on the accuracy of the measurements, the
variety of the measurements and the variety of loading conditions. The variety of the measurements
is determined by the distribution of the measurement points and the type of measurements (e.g.
displacement, water pressure, seepage of water and temperature). In this paper, we introduce a
method to identify the damage zone by means of inverse analysis based on a series of measurement
data such as transient displacements, temperatures and water pressures. The inverse problem is
solved iteratively by the Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). The
uncertainties of the measurement data may propagate to the uncertainty in the identification of
the damage zone. This paper considers the uncertainties of the measurements by assuming different
noise realizations in the data and the uncertainties of the damage zone can be quantified by its
probability distribution.

2. Methodology

2.1. Formulation of inverse analysis

The forward operator (F ), which maps the input model parameters of the damage zone to the
responses at the finite sub-domains or boundaries (i.e displacement u, water pressure Pl and
temperature T ), is

F : X → Y

ppp 7→ (u, Pl, T ),
(1)

where X denotes the parameter space, Y denotes the space of responses. The responses at the
sub-domains Γ is denoted by a set of responses e.g. yyy(t) = y(u(t), Pl(t), T (t)), where t is the time,
u is the displacement, Pl is the liquid pressure and T is the temperature. The measurements of the
responses are generally distorted by a certain amount of noise. These measurements with noise are
denoted by yyyε. The εεε is introduced as a set of random noise in the measurements, i.e.

yyyε(t) = yyy(t) + εεε(t). (2)

Assuming that a finite element model is used as forward operator, which maps a model with damage
zone to the model responses accurately, the inverse problem with given measured data is defined
by

F (ppp) = yyyε(t). (3)

In the indirect method of inverse analysis, the parameters ppp are estimated by minimising a norm of
the difference between the measured responses (yyyε) and the model responses (F (ppp)). The norm is
known as ’objective function’. The optimization algorithms drive an objective function in a way to
find the minimum value of the objective function by changing the input parameters systematically.
The questions of the inverse problem are to define the parameters as variables for the forward model,
to define the objective function and to establish a suitable iterative algorithm for optimizing the
objective function.
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2.2. Objective function

Let yyyε be a set of measured data from an experiment and yyyc be a set of obtained data by numerical
simulation depending on a vector of model parameters ppp = {p1, p2, ..., pJ}. The difference between
the calculated and measured values defines the residual

ftmd(ppp) = yεtmd − yctmd. (4)

It is defined that t = 1, 2, ..., Tt, where Tt is the number of measured data according to time,
m = 1, 2, ...,M , where M is the number of selected points for observation, d = 1, 2, ..., D is the
number of serial measurements, for instance temperature, degree of saturation, or stress in one
location and ωtmd is the weighting factor for each measurement, a function of the model parameters
is expressed as a normalized weighted sum of the squared errors

fMAE
d (ppp) =

√√√√ Tt∑
t=1

M∑
m=1

[ftmd(ppp)]2ωtmd∑Tt
t=1

∑M
m=1 [yεtmd]2

, (5)

where values of ωtmd depend on the importance and reliability of the analysed data. In Eq. (5), it

is assumed that
∑Tt

t=1

∑M
m=1 [yεtmd]2 is larger than zero.

Finally, considering the multi-field data, such as D different serial measurements, the objective
function is defined as

f(ppp) =
1

D

D∑
d=1

fMAE
d (ppp)ωd , (6)

where ωd is the weighting factor for each serial measurement.
In special cases, when the yε cannot be measured at each point, i.e. the flux of water out of

the dam, the common method to do so is to collect the amount of water on finite areas. Figure 2
illustrates the water collection along the downstream side. The water fluxes at the areas a−b, b−c,
c− d, d− e and e− f are collected at the collecting point a, b, c, d and e respectively. Therefore, in
the numerical simulation we have to integrate the water in each domain (a− b, b− c, c− d, d− e
and e− f) in order to compare with the measurement data. For instance, water collected Qo at a
collecting point is

Qo =

b∫
a

qodl =

b∫
a

[qx cos(θ) + qy sin(θ)] dl, (7)

where qo is the flux of water out of line a-b at position l. The direction of the flow is perpendicular
with the boundary plain, therefore, qo is converted from flux flowing x axis and flux following y
axis, see Fig 1. Here, θ denotes the angle between boundary line and vertical axis.
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Figure 1. Axis translation of the out flow of water.

2.3. Parameterization of the forward problem

The parameters of the forward problem include a set of parameters for the initial materials (struc-
tures and subsoils), a set of parameters for the damage material, a set of parameters defining
the geometry of the initial forward problem and a set of parameters defining the geometry of the
damage zone. In this paper, we define the sets of parameters for the initial materials and the set
of parameters defining the geometry of the initial forward problem as the constants. The set of
parameters defining the geometry of the damage zone is considered the unknowns in the inverse
problem. The geometry of damage zone is diverse. The complex geometry could lead to the complex
function with many parameters, which could slow down the convergence of the objective function.
It is acceptable if the damage zone can be quantified approximately by less number of parameters.
In this paper, the geometry of the damage geometry is defined by a moving elliptic shape. The
material parameters of the damage zone are also considered the unknowns. Therefore, the damage
zone can be defined as follows,

g(ppp) = g(pppg, pppm) (8)

where pppg is the vector defining the geometry of the damage, pppg = (a, b, xc, yc, α), in which a is
the major radius, b is the minor radius, (xc, yc) are the center coordinates in the x, y plain, α
the rotation angle of the major diameter. The elements inside this ellipse are defined as damage
material. The example of the damage zone in the dam body is presented in Figure 2, the white
elements represent the damage zone, which are bounded by the function g(pppg).

The vector pppm includes model parameters defining the behaviour of the material at the damage
zone, pppm = (E, ko, λ), in which E is the elastic modulus, ko is the intrinsic permeability, λ is
the thermal conductivity. The deterioration of the material properties at the damage zone has
close correlation with the porosity. The change of porosity effects explicitly the elastic modulus,
the permeability and the thermal conductivity. Therefore, the relations between E, ko and λ are
described in the constitutive models. With the change of porosity, these parameters will change,
accordingly. Consequently, the number of unknown parameters reduces.
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Figure 2. Geometry, assumed damage zone and measurement locations.

2.4. Optimization method

Particle swarm optimisation works basically by considering a population (called a ”swarm”) of
candidate solutions of the optimisation problem (called particles). These particles are moved around
in the search space according to several simple laws. The movements of the particles are guided
by their own best known position in the search space as well as the entire swarm’s best known
position. Translating this to parameter identification problems, we consider a collection (swarm) of
parameter vectors. Now, the entries in the vectors are repeatedly updated by combining local and
global information about the values of the objective functions for the different parameter vectors.
When better vectors are discovered, they will determine the further updates of the parameters.
This process is repeated iteratively and by doing so, it is expected that a satisfactory solution of
the calibration problem will eventually be discovered with high probability.
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2.5. Uncertainties in damage identification

The sources of uncertainties in identification of the damage are of different types, for instance, the
inhomogeneous material, the accuracy of the model, the accuracy of the measurements and the
uncertainty of the optimization algorithm. This paper firstly intends to quantify the uncertainties
caused by the accuracy of the measurements and the uncertainty of the optimization algorithm.
By changing the amount of noise εεε (ε = δRny

ε), where ε is an entry of εεε, Rn is a random number
following the standard normal distribution, δ is the noise level, the accuracy of the re-constructed
shapes will be considered.

Secondly, the uncertainty of the optimization algorithm can be quantified by the distribution of
the solution, when the optimization is repeated n times with the random initial guess in the search
space (Nguyen-Tuan et al., 2016), it is called sampling process. The samples of the optimizations
are accessed by statistical methods accordingly.

2.6. Forward model: balance equations

The THM problems are formulated by a system of coupled balance equations. Equations for mass
balance were established by following the compositional approach (Olivella et al., 1996). Consti-
tutive equations are used to connect between the primary unknowns (i.e. displacements, liquid
pressure, gas pressure and temperature) to the parameters and the dependent variables e.g. water
saturation, energy flux and so on. In the sequel, we describe briefly the forward model by giving
the most essential balance equations.

Mass balance of water: Water is present in the liquid phase. The total mass balance of water is
expressed as follows:

∂

∂t
(θw) +∇ · (qqqw) = fw. (9)

where fw is an external supply of water, θw is the volumetric mass of water, qqqw is the advective
fluxes.

Momentum balance for the medium: The momentum balance reduces to the equilibrium of
stresses if the inertial terms are neglected as:

∇ · σσσ + bbb = 0, (10)

where, σσσ is the stress tensor and bbb is the vector of body forces.

Internal energy balance for the medium: Heat transfer is modelled considering heat conduc-
tion of material and heat transport by means of mass motion. The equation for the internal
energy balance for the porous medium is established taking into account the internal energy
in each phase (Es, El) as:

∂

∂t
(Esρs (1− φ) + Ewρwφ) +

∇ · (iiic + jjjEs + jjjEw) = fQ,
(11)
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where, iiic is the energy flux due to the conduction through the porous medium, the fluxes jjjEs,
jjjEw are advective fluxes of energy caused by mass motions and fQ is an internal/external
energy supply, ρs is the density of solid, ρw is the density of the liquid i.e. 1000 [kg.m−3].

The final objective is to find the unknowns from the balance equations. Therefore, the dependent
variables have to be related to the unknowns in the following constitutive relations. The constitu-
tive relations of the coupled THM model includes thermo-elastic model for stress-strain relation,
constitutive model for water transport (Darcy’s law) and constitutive model for heat conduction
(Fourier’s law). The validation of the model in the non-damage case is reported in Nguyen-Tuan
et al..

3. Application to Masonry Dams

3.1. Geometry and discretization

The cross section of the Fürwigge dam is used for forward and inverse simulations. The data are
generated synthetically by solving the forward problem. To avoid inverse crimes (Colton and Kress,
2013), the generation of the synthetic measurements is performed on a different mesh from the
inverse process. The geometry and discretization mesh, which can be seen in Figure 2, are used for
synthesizing measurement data. This mesh has 2520 elements. In the inverse process, the geometry
mesh has 3357 elements. It is assumed that the white elements is a damage zone where its material
properties (pppm) are defined by its porosity.

3.2. Damage indentification

The assumed damage zone is pure artificial and not related to the current working conditions of
the Füwigge dam. The search space is illustrated in Figure 3. The noise level is δ = ±1 and ±5%.
We chose a swarm size of 24 particles. The reason is that the convergence of the big swarm is faster
than the convergence of the small swarm, and the big swarm will decrease the probability of the
local minimum trap.

The measurement data, which are used to formulate the objective function, are established by
the displacement, temperature, water pressure and the collection of the water outflow. Displacement
are measured by 2 radar devices at the downstream side and pendulum for the upstream side, herein
11 measurement points are the selected (red rectangular points). Water pressures and temperatures
are measured at the cyan circular points (10 points), the water pressures are additional measured
at two more white points as it was designed in Fürwigge dam, see Figure 2. Thermocouples are
used to measure temperature. Water pressures are measured by piezometers or tensiometers. The
volume of water outflow at downstream side (magenta line) are measured at the collecting points
(a, b, c, d and e). In numerical simulation, the water outflow is computed as in Eq. (8). The porosity
is the unknown quantity and it varies in the bounds from 0.30 to 0.65.
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Figure 3. Materials and searching zone.

4. Results

Figure 4 presents the re-construction (inverse) solutions considering several noise levels. When the
level of noise increases from ±1% to ±5% the uncertainty of the solutions increase, accordingly.
The best objective functions presented in the figure is of the solution with ±1% noise level. The
deterioration of the material properties is defined by the material porosity (φ). The solution in
terms of porosity shows that the inverse solutions are close to the exact solution. The figure shows
that the PSO method can be a good method for damage identification.
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Figure 4. Results of optimization for different noise levels.
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Figure 5. Histogram of the solutions (δ = 0%).
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The inverse problem is solved repeatedly 15 times by PSO method. In order to avoid the depen-
dence of the initial guess, the initial guesses of the particles are randomly uniform distributed in
their search space. The histogram of the solution is presented in Figure 5. The color bar illustrates
the frequency of the solutions which describe the damage zone. Certainly, the solution can not
fit totally with the exact solution, because we used different meshes in the inverse and forward
problems. It shows that the method can identify the damage zone with small uncertainty, when
the noise level is zero. However, the uncertainty can also increase when the noise level increases.
It can be recognized that the solutions are not identical with different initial guesses, however, the
convergence of the solution is close to the exact solution.

5. Conclusion

In this paper, we introduce the method to not only detect the damage zone but also identify the
severity of the damage. The severity of the damage is described by its material parameters in the
coupled THM model. The PSO shows that it is a robust method in searching the minimum of
the non-linear objective functions. The accuracy of the measurement data effects significantly the
uncertainty of the results of the inverse problems. The uncertainty of the inverse problem can be
quantified by the the probability distribution of the solutions obtained from the sampling process.
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